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ABSTRACT	  

Human-machine interfaces (HMIs) often have pattern recognition-based myoelectric control for 
rehabilitation purposes. In order to make this technology applicable in the real world, the control 
needs to be as robust as possible. For pattern recognition-based myoelectric control, feature 
selection is the preprocessing step that finds relevant data to improve robustness of a learning 
algorithm. A filter is a feature selection algorithm that uses only the inherent data characteristics 
to evaluate features. In this paper, thirty five time-domain and frequency-domain 
electromyography (EMG) features are evaluated using a univariate filter method in order to 
determine the feature most likely to produce the highest prediction accuracy in lifted load 
classification. The features are extracted from a database of raw surface EMG recordings from 
the lower back muscles. The EMG signals were recorded from nine healthy subjects while they 
performed a weight-lifting task with three different loads. For pre-lift and post-lift of a single 
subject, v-order (V) was the best feature. For pre-lift of nine subjects, frequency ratio (FR) was 
the best feature. The results from this study can provide helpful insight for the feature selection 
for EMG-based pattern recognition models. 	  
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1. INTRODUCTION 
	  
  With the recent development in machine learning in the past years, intuitive human-
machine interfaces (HMIs) have become a point of interest. HMIs are used in many different 
fields including in the clinical and biomedical field. Surface electromyography (EMG) pattern 
recognition algorithms are common methods of control for HMIs for reliable user motion intent 
classification. Surface EMG signals are electrical activity of muscle fibers measured from the 
surface of the skin. EMG-based HMIs are especially prominent in the field of rehabilitation [5]. 
Examples of EMG-based HMIs include powered orthoses/exoskeletons, rehabilitation robotics, 
and powered prostheses [3]. One type of user intended motion that EMG pattern recognition 
algorithms can predict is when a user lifts a weight. An example of such an EMG-based HMI is a 
powered back orthosis that identifies what a person is lifting before the person lifts the weight 
and applies the correct amount of assistive torque on the lower back when the weight is lifted to 
prevent lower back pain. 	  

	  

2. BACKGROUND 
	  
EMG features are statistical properties of the EMG signal. EMG features can be grouped 

into two main categories: time-domain and frequency-domain [5]. Time-domain features provide 
information for onset detection, muscle contraction, and muscle activity detection [6]. Time-
domain features also are easy to implement and can be done in real time. Frequency-domain 
features provide information about the frequency and power of the EMG signal. They are often 
used to study fatigue of muscles and recruitment pattern of motor units (MU) [2].	  

For successful load classification of surface EMG signals, there are three main aspects to 
consider: processing of data, feature extraction, and classification methods [5]. Raw surface 
EMG signals are processed according to the type of feature needed to be extracted. Features are 
extracted from the appropriately processed EMG signal. Based on the extracted features, a 
pattern recognition model recognizes the EMG signal patterns and classifies them into 
predefined load classes. Popular pattern recognition models include neural network, hidden 
Markov model, and support vector machine. Fig. 1 shows an overview of how load classification 
of surface EMG signals works.                                                                                                                      
 The features inputted into a pattern recognition model, or classifier, are crucial factors of 
the accuracy and response time of the model. Feature selection is the preprocessing step that 
finds relevant features to improve robustness of a learning algorithm for pattern recognition-
based myoelectric control. There are three main feature selection techniques: Filter methods, 
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wrapper methods, and embedded methods. Filter methods measure how relevant a feature is 
based on the intrinsic properties of the data. Univariate filters, a type of filter method, are 
advantageous to use because they are computationally simple, fast, and independent of the 
classifier [7].                                                                                                                                    . 
 In this study, thirty five time-domain and frequency-domain electromyography (EMG) 
features, found in literature [1], are evaluated using multinomial logistic regression (MLR), a 
univariate filter, in order to determine the feature most likely to produce the highest prediction 
accuracy in lifted load classification. The results from this study will provide helpful insight into 
the feature selection for EMG-based pattern recognition models.	  

	  
	  
Figure 1. Overview of load classification of surface EMG signals. Raw surface EMG signals are 
processed according to the type of feature needed to be extracted. Features are extracted from 
appropriately processed EMG signal. Based on the extracted features, a pattern recognition 
model recognizes the EMG signal patterns and classifies into predefined load classes. Popular 
pattern recognition models include neural network, hidden Markov model, and support vector 
machine.	  
	  
3. DATA COLLECTION   
	  

The dataset used to evaluate the proposed EMG features was taken from lower back 
EMG sensors from nine healthy subjects. Placement of lower back EMG sensors are shown in 
Fig. 2C. These signals were recorded and sampled at a sampling rate of 1200 Hz with the Trigno 
Wireless EMG system. The EMG data was collected as the subjects lifted three weight classes, 0, 
10, and 24 lbs, from a table on a force plate when prompted by a screen (Fig. 2B). To simulate 
lifting 0 lbs, or no weight, subjects lifted light aluminum-covered sticks. Each subject lifted each 
weight class ten times. The weight classes can be seen in Fig. 2A. Subjects also did two 
repetitions of isometric back extension while lying on a roman chair at a 45° angle. From this 
task, the maximum EMG baseline for the lower back muscles was taken in order to normalize 
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EMG data for time-domain features. A diagram illustrating this isometric back extension can be 
seen in Fig. 2D. 	  
	  
A.                                                            B.  

               	  
	  

C.                                                                              D.	  

                                        	  
	  
Figure 2. Experimental apparatus and placement of EMG sensors. (A) Placement of the three 
classes of weights, 0, 10, and 24 lbs, on table. Lifting no weight is simulated by having the 
subjects pick up light aluminum-covered sticks. (B) Diagram illustrates a subject lifting weights 
from a table on a force plate when prompted by a screen. (C) Placement of EMG electrodes on 
the lower back. (D) Picture of subject doing two repetitions of isometric back extension while 
lying on a roman chair at a 45° angle. These pictures are reprinted with permission of Deema 
Totah.	  

	  
4. DATA ANALYSIS 
	  

Data analysis for feature evaluation consists of three main steps. These steps are 
segmentation and pre-processing of data, feature extraction, and feature evaluation.                       	  
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  4.1 Segmentation of EMG data	  

Segmentation of raw EMG data into known classes (0,12 and 24 lbs) is a necessary step 
to improve accuracy and response time of feature extraction. EMG data was segmented using 
threshold detection from the force plate data. Lift time is defined as the instant at which the 
weights are off the table, as seen in Fig. 3 with a red circle. An example of using threshold 
detection from the force plate data of one subject to find lift times can be seen in Fig. 4, where 
the black circles indicate lift detection times of 10 lbs and blue circles indicate the lift detection 
times of 24 lbs. Once lift times are detected, the EMG data is segmented into its respective 
weight class with a segment length of approximately 12 seconds. 	  
	  

            	  
	  

   Figure 3. Force plate data of subject 11 lifting a weight class. Lifting occurs when the mean 
threshold value for the weight class in the force plate data is first reached. The red circle 
indicates the time at which lifting occurs. 
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Figure 4. Example of using threshold detection of 10 and 24 lbs from the force plate data to 
segment the raw EMG signal. Black circles indicate the lift detection times of 10 lbs and blue 
circles indicate the lift detection times of 24 lbs. These lifting times are used to segment the 
EMG data.	  
	  
 4.2 Pre-processing of data for time-domain features	  
	  
 Pre-processing of data for time-domain features involves filtering and normalizing the 
segmented data. The data is first filtered using two 5th order Butterworth filters, which consist of 
a 20-300 Hz band pass filter and 59 - 61 Hz band stop filter. After applying the Butterworth 
filter, the data is de-meaned, rectified, and applied with a low-pass filter with a cutoff frequency 
of 4 Hz to get a linear envelope of the signal.	  

Because EMG signals are unique to each subject, the processed data need to be 
normalized in order to compare subjects to each other. The normalization method proposed is 
percent maximum voluntary contraction (MVC) and can be seen in Eq. 1 where EMG signal in 
% MVC is the processed time-domain EMG data and maximum EMG baseline, obtained by the 
isometric contraction tasks.	  

	  

                          %𝑀𝑉𝐶	   = !"#  !"#$%&
!"#$!%!  !"#  !"#$%&'$

×100  	                                                  (1)	  
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4.3 Pre-processing of data for frequency-domain features	  
	  

Pre-processing of data for frequency-domain features involves filtering out noise from 
the segmented data. Before evaluating the frequency-domain features, the raw EMG signal was 
filtered with a band stop filter around 60 Hz to remove electrical noise. Once the raw EMG 
signal is filtered, the data is transformed into a fast Fourier transform (FFT). FFTs provided 
power and frequency information of the filtered signal. Once EMG segments are transformed, 
frequency-domain features can be extracted.	  
	  
4.4 Feature extraction and feature evaluation	  
	  

Thirty five time-domain and frequency-domain EMG features, found in literature with 
defined parameters [1], were extracted from a single-EMG channel. Of the thirty five features, 
twenty three were time-domain features and twelve were frequency-domain features.                                                                                                              
 To evaluate features, multinomial logistic regression (MLR) is used as a univariate filter, 
a technique to evaluate the “goodness” of a feature based on a heuristic merit. The data input into 
MLR was the extracted feature values and its associated class (represented in binary using a one-
vs-all strategy). 70% of the data of one subject was used to train the MLR model and 30 % of the 
data was used to test the trained MLR model. Data for one subject consisted of 30 lifts, 10 for 
each weight class. Out of the 19 subjects that we had, we used nine subjects for the multi-subject 
feature evaluation. For the multi-subject data, 67% was used to train the MLR model and 33 % 
was used to test the trained MLR model. Training and testing data for nine subject was split by 
subject. Using the test data set, the MLR model outputted the probabilities for each of the 
classification classes. The highest probability was taken and labeled as the output label in binary 
and compared to the class identification binary matrix to determine classification accuracies of 
each feature.	  

	  

5. RESULTS  
	  

            For feature evaluation of subject 11, two 100 ms window, pre-lift and post-lift, were 
investigated. Pre-lift was defined as the 100 ms time frame before lift time. Post-lift was defined 
as the 100 ms time frame after lift time. The pre-lift time window was investigated because it was 
the ideal window of interest for a pattern recognition model to predict a user’s intention of lifting 
a load. The post-lift time window was investigated to provide insight on feature classification 
performance when varying time windows. 	  
           The top ten performing features for subject 11 at pre-lift can be seen in Fig. 5. V-order (V) 

was the top performing feature with a classification accuracy of 88.9%. Time-domain features are 
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predominant amongst the top ten performing features. Time-domain features seem to do better 
than the frequency-domain in classification accuracy in pre-lift. The top ten performing features 
for subject 11 at post-lift can be seen in Fig. 6. The feature with the highest classification 
accuracy was V with an accuracy of 67.8%. Time-domain features are predominant amongst the 
top ten performing features.	  
           For nine subjects, features were evaluated at the pre-lift time window. The top ten 

performing features of nine subjects at pre-lift can be seen in Fig. 7. The feature with the highest 
classification accuracy was frequency ratio (FR) with an accuracy of 77.8%. Frequency-domain 
features are predominant amongst the top ten performing features.	  

For pre-lift and post-lift of subject 11, v-order (V) was the best feature. Post-lift feature 
classification accuracies of the top ten features are lower than pre-lift features’. It was interesting 
to note that histogram (HIST) and FR were in the top ten features of both the single and nine 
subject for pre-lift. Descriptions of the top performing features, V, FR, and HIST, can be found in 
the appendix.	  

	  

       	  
  	  

Figure 5. Top ten features of subject 11 at pre-lift, a 100 ms time window. The feature with the 
highest classification accuracy was v-order (V) with an accuracy of 88.9%. Time domain features 
are predominant amongst the top ten performing features. The time-domain features seemed to 
do better than the frequency-domain in classification accuracy. 	  
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Figure 6. Top ten performing features of subject 11 at post-lift, a 100 ms time window. The 
feature with the highest classification accuracy was v-order (V) with an accuracy of 67.8%. 
Time-domain features are predominant amongst the top ten performing features.	  

	  

	  
Figure 7.  Top ten performing features of nine subjects at pre-lift, a 100 ms time window. The 
feature with the highest classification accuracy was frequency ratio (FR) with an accuracy of 
77.8%. Frequency-domain features are predominant amongst the top ten performing features.	  
	  
6. DISCUSSION 
	  

Based on the results we obtained, the single feature with the highest prediction accuracy 
in lifted load classification for subject 11 was V and the single best performing feature of nine 
subjects was FR. However, because EMG signals vary from person to person, we cannot 
conclusively say that V was the best feature for any single subject. Cross-validation of training 



	  
10	  

	  

and testing data is needed in order to produce results that are independent of the order of the 
training and testing data are used in the MLR model. Once the data is cross-validated, a practical 
application of these results include being able to fine tuning EMG pattern recognition algorithms 
for reliable user intent load classification to a specific person or to a general population. 	  

Future work will extend to using a multivariate filter for single feature evaluation.  One 
of the disadvantages to using a univariate filter method is that feature redundancy is not 
considered. In Yu et al, a feature is considered good if it is relevant to the EMG data but has low 
correlation to other features [8]. In order to meet this definition, features can be evaluated using a 
multivariate filter. In addition to finding the single best feature with a multivariate filter, finding 
an optimal set of features for lifted load classification could further improve robustness of EMG 
pattern recognition algorithms. 	  
	  
7. CONCLUSION 

	  
In this study, we evaluated thirty five time-domain and frequency-domain EMG features 

using a univariate filter method in order to determine the feature most likely to produce the 
highest prediction accuracy in lifted load classification. Our preliminary results include that for 
pre-lift and post-lift of a single subject, v-order (V) was the best feature and for pre-lift of nine 
subjects, frequency ratio (FR) was the best feature. However, cross-validation of testing and 
training data is needed in order to definitively say what the best feature for a single and multiple 
subjects are. Future work will extend to using a multivariate filter for single feature evaluation 
and finding an optimal set of features for lifted load classification to try to further improve 
robustness of EMG pattern recognition algorithms. 	  
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APPENDIX	  

V-order (V)	  

A time-domain feature that estimates of the exerted muscle force. The mathematical definition is that it is 
the absolute value of EMG signal to the V-th power. In this study, V was set to 3. N is the length of the 
EMG signal.  V feature is defined as	  

	  

Frequency ratio (FR)	  

A frequency-domain feature that distinguishes between contraction and relaxation of muscle using the 
ratio between the low frequency and the high frequency components of the EMG signal. FR is defined as	  

	  

Histogram (HIST)	  

A time-domain feature that provides information of the frequency with which the EMG signal 
reaches various amplitudes. Histogram divides elements in the EMG signal into B equally spaced 
segments and returns a number of signal elements for each segment. In this study, B was set to 3.	  
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